========================================= Markov Chain Monte Carlo and Poisson data ========================================= .. todo:: The documentation needs a full review; an example of setting priors on parameters is needed; should the example be simplified? Statistical background and Sherpa's implementation ================================================== Sherpa provides a `Markov Chain Monte Carlo (MCMC) `_ method designed for Poisson-distributed data. It was originally developed as the `Bayesian Low-Count X-ray Spectral (pyBLoCXS) `_ [1]_ package based on the algorithm presented in `Analysis of Energy Spectra with Low Photon Counts via Bayesian Posterior Simulation `_ by van Dyk et al. (2001) [2]_. A general description of the techniques employed along with their convergence diagnostics can be found in the Appendices of [2]_ and in [3]_. Sherpa's implementation of MCMC is written specifically for the Bayesian analysis. It supports a flexible definition of priors. It can be used to compute posterior predictive p-values for the likelihood ratio test [4]_. It can also account for instrument calibration uncertainty [5]_. MCMC selects random samples from the posterior probability distribution for the assumed model starting from the best fit (maximum likelihood) given by the standard optimization methods in Sherpa (i.e. result of the `~sherpa.astro.ui.fit`). The MCMC is run using `~sherpa.astro.ui.get_draws` for a specific dataset, the selected sampler, the priors, and the specified number of iterations. It returns an array of statistic values, an array of acceptance Booleans, and an array of sampled parameter values (i.e. draws) from the posterior distribution. The multivariate t-distribution is the default proposal distribution in `~sherpa.astro.ui.get_draws`. This distribution is defined by the multivariate normal (for the model parameter values and the covariance matrix), and chi2 distribution for a given degrees of freedom. The algorithm provides a choice of MCMC samplers with different jumping rules for acceptance of the proposed parameters: Metropolis (symmetric) and Metropolis-Hastings (asymmetric). Note that the multivariate normal distribution which requires the parameter values and the corresponding covariance matrix. `~sherpa.astro.ui.covar` should be run beforehand. Additional scale parameter allows to adjust the scale size of the multivariate normal in the definition of the t-distribution. This could improve the efficiency of the sampler and can be used to obtain the required acceptance rates. Jumping Rules ------------- The jumping rule determines how each step in the MCMC is calculated [3]_. The setting can be changed using `~sherpa.astro.ui.set_sampler`. The `sherpa.sim` module provides the following rules, which may be augmented by other modules: - ``MH`` uses a Metropolis-Hastings jumping rule assuming a multivariate t-distribution centered on the best-fit parameters. - ``MetropolisMH`` mixes the Metropolis-Hastings jumping rule with the Metropolis jumping rule centered at the current set of parameters, in both cases sampled from the same t-distribution as used with ``MH``. The probability of using the best-fit location as the start of the jump is given by the ``p_M`` parameter of the rule (use `~sherpa.astro.ui.get_sampler` or `~sherpa.astro.ui.get_sampler_opt` to view and `~sherpa.astro.ui.set_sampler_opt` to set this value), otherwise the jump is from the previous location in the chain. Options for the sampler are retrieved and set by `~sherpa.astro.ui.get_sampler` or `~sherpa.astro.ui.get_sampler_opt`, and `~sherpa.astro.ui.set_sampler_opt` respectively. The list of available samplers is given by `~sherpa.astro.ui.list_samplers`. Choosing priors ---------------- By default, the prior on each parameter is taken to be flat, varying from the parameter minima to maxima values. This prior can be changed using the `~sherpa.astro.ui.set_prior` function, which can set the prior for a parameter to a function or Sherpa model. The list of currently set prior-parameter pairs is returned by the `~sherpa.astro.ui.list_priors` function, and the prior function associated with a particular Sherpa model parameter may be accessed with `~sherpa.astro.ui.get_prior`. Running the chain ----------------- The `~sherpa.astro.ui.get_draws` function runs a chain using fit information associated with the specified data set(s), and the currently set sampler and parameter priors, for a specified number of iterations. It returns an array of statistic values, an array of acceptance Booleans, and a 2-D array of associated parameter values. Analyzing the results --------------------- The `sherpa.sim` module contains several routines to visualize the results of the chain, including `~sherpa.astro.ui.plot_trace`, `~sherpa.astro.ui.plot_cdf`, and `~sherpa.astro.ui.plot_pdf`, along with `~sherpa.utils.get_error_estimates` for calculating the limits from a parameter chain. References ---------- .. [1] https://hea-www.harvard.edu/AstroStat/pyBLoCXS/ .. [2] "Analysis of Energy Spectra with Low Photon Counts via Bayesian Posterior Simulation", van Dyk et al. 2001, ApJ, 548, 224 https://adsabs.harvard.edu/abs/2001ApJ...548..224V .. [3] Chapter 11 of Gelman, Carlin, Stern, and Rubin (Bayesian Data Analysis, 2nd Edition, 2004, Chapman & Hall/CRC). .. [4] "Statistics, Handle with Care: Detecting Multiple Model Components with the Likelihood Ratio Test", Protassov et al., 2002, ApJ, 571, 545 https://adsabs.harvard.edu/abs/2002ApJ...571..545P .. [5] "Accounting for Calibration Uncertainties in X-ray Analysis: Effective Areas in Spectral Fitting", Lee et al., 2011, ApJ, 731, 126 https://adsabs.harvard.edu/abs/2011ApJ...731..126L Example ======= Simulate the data ------------------ .. plot:: :include-source: :context: :nofigs: Create a simulated data set: >>> import numpy as np >>> rng = np.random.RandomState(2) # For reproducibility of this example >>> x0low, x0high = 3000, 4000 >>> x1low, x1high = 4000, 4800 >>> dx = 15 >>> x1, x0 = np.mgrid[x1low:x1high:dx, x0low:x0high:dx] Convert to 1D arrays: >>> shape = x0.shape >>> x0, x1 = x0.flatten(), x1.flatten() Create the model used to simulate the data: >>> from sherpa.astro.models import Beta2D >>> truth = Beta2D() >>> truth.xpos, truth.ypos = 3512, 4418 >>> truth.r0, truth.alpha = 120, 2.1 >>> truth.ampl = 12 Evaluate the model to calculate the expected values: >>> mexp = truth(x0, x1).reshape(shape) Create the simulated data by adding in Poisson-distributed noise: >>> msim = rng.poisson(mexp) What does the data look like? ----------------------------- Use an arcsinh transform to view the data, based on the work of `Lupton, Gunn & Szalay (1999) `_. .. plot:: :include-source: :context: >>> import matplotlib.pyplot as plt >>> # plt.image returns an image object. We don't need it any further for >>> # this example, so we just put it in a throwaway variable to avoid extra screen output. >>> _ = plt.imshow(np.arcsinh(msim), origin='lower', cmap='viridis', ... extent=(x0low, x0high, x1low, x1high), ... interpolation='nearest', aspect='auto') >>> _ = plt.title('Simulated image') Find the starting point for the MCMC ------------------------------------ Set up a model and use the standard Sherpa approach to find a good starting place for the MCMC analysis: .. plot:: :include-source: :context: >>> from sherpa import data, stats, optmethods, fit >>> d = data.Data2D('sim', x0, x1, msim.flatten(), shape=shape) >>> mdl = Beta2D() >>> mdl.xpos, mdl.ypos = 3500, 4400 Use a Likelihood statistic and Nelder-Mead algorithm: >>> f = fit.Fit(d, mdl, stats.Cash(), optmethods.NelderMead()) >>> res = f.fit() >>> print(res.format()) Method = neldermead Statistic = cash Initial fit statistic = 20048.5 Final fit statistic = 607.229 at function evaluation 777 Data points = 3618 Degrees of freedom = 3613 Change in statistic = 19441.3 beta2d.r0 121.945 beta2d.xpos 3511.99 beta2d.ypos 4419.72 beta2d.ampl 12.0598 beta2d.alpha 2.13319 Now calculate the covariance matrix (the default error estimate): >>> f.estmethod >>> eres = f.est_errors() >>> print(eres.format()) Confidence Method = covariance Fitting Method = neldermead Statistic = cash covariance 1-sigma (68.2689%) bounds: Param Best-Fit Lower Bound Upper Bound ----- -------- ----------- ----------- beta2d.r0 121.945 -7.12579 7.12579 beta2d.xpos 3511.99 -2.09145 2.09145 beta2d.ypos 4419.72 -2.10775 2.10775 beta2d.ampl 12.0598 -0.610294 0.610294 beta2d.alpha 2.13319 -0.101558 0.101558 The covariance matrix is stored in the ``extra_output`` attribute:: >>> cmatrix = eres.extra_output >>> pnames = [p.split('.')[1] for p in eres.parnames] >>> _= plt.imshow(cmatrix, interpolation='nearest', cmap='viridis') >>> _= plt.xticks(np.arange(5), pnames) >>> _ = plt.yticks(np.arange(5), pnames) >>> _ = plt.colorbar() Run the chain ------------- .. plot:: :include-source: :context: :nofigs: Finally, run a chain (use a small number to keep the run time low for this example): >>> from sherpa.sim import MCMC >>> mcmc = MCMC() >>> mcmc.get_sampler_name() 'MetropolisMH' >>> draws = mcmc.get_draws(f, cmatrix, niter=1000, rng=rng) >>> svals, accept, pvals = draws >>> pvals.shape (5, 1001) >>> accept.sum() * 1.0 / 1000 0.486 Trace plots ----------- .. plot:: :include-source: :context: close-figs >>> _ = plt.plot(pvals[0, :]) >>> _ = plt.xlabel('Iteration') >>> _ = plt.ylabel('r0') Or using the :py:mod:`sherpa.plot` module: .. plot:: :include-source: :context: >>> from sherpa import plot >>> tplot = plot.TracePlot() >>> tplot.prepare(svals, name='Statistic') >>> tplot.plot() PDF of a parameter ------------------ .. plot:: :include-source: :context: close-figs >>> pdf = plot.PDFPlot() >>> pdf.prepare(pvals[1, :], 20, False, 'xpos', name='example') >>> pdf.plot() And adding in the covariance estimate using `matplotlib.pyplot.annotate`: >>> xlo= eres.parmins[1] + eres.parvals[1] >>> xhi = eres.parmaxes[1] + eres.parvals[1] >>> _ = plt.annotate('', (xlo, 90), (xhi, 90), arrowprops={'arrowstyle': '<->'}) >>> _ = plt.plot([eres.parvals[1]], [90], 'ok') CDF for a parameter ------------------- .. plot:: :include-source: :context: close-figs Normalise by the actual answer to make it easier to see how well the results match reality: >>> cdf = plot.CDFPlot() >>> _ = plt.subplot(2, 1, 1) >>> cdf.prepare(pvals[1, :] - truth.xpos.val, r'$\Delta x$') >>> cdf.plot(clearwindow=False) >>> _ = plt.title('') >>> _ = plt.subplot(2, 1, 2) >>> cdf.prepare(pvals[2, :] - truth.ypos.val, r'$\Delta y$') >>> cdf.plot(clearwindow=False) >>> _ = plt.title('') >>> plt.subplots_adjust(hspace=0.4) Scatter plot ------------ .. plot:: :include-source: :context: close-figs >>> _ = plt.scatter(pvals[0, :] - truth.r0.val, ... pvals[4, :] - truth.alpha.val, alpha=0.3) >>> _ = plt.xlabel(r'$\Delta r_0$', size=18) >>> _ = plt.ylabel(r'$\Delta \alpha$', size=18) This can be compared to the :py:class:`~sherpa.plot.RegionProjection` calculation: .. plot:: :include-source: :context: close-figs >>> _ = plt.scatter(pvals[0, :], pvals[4, :], alpha=0.3) >>> from sherpa.plot import RegionProjection >>> rproj = RegionProjection() >>> rproj.prepare(min=[95, 1.8], max=[150, 2.6], nloop=[21, 21]) >>> rproj.calc(f, mdl.r0, mdl.alpha) >>> rproj.contour(overplot=True) >>> _ = plt.xlabel(r'$r_0$') >>> _ = plt.ylabel(r'$\alpha$') Connections to ArviZ -------------------- `ArviZ `_ is a Python package for exploratory analysis of Bayesian models. It serves as a backend-agnostic tool for diagnosing and visualizing Bayesian inference and provides different plotting and statistical diagnostic functions for MCMC chains, that are not implemented in Sherpa itself. If the ArviZ package is installed, `~sherpa.sim.mcmc_to_arviz` can be used to convert the MCMC results to an `arviz.data.inference_data.InferenceData` object. .. plot:: :include-source: :context: close-figs .. doctest-requires:: arviz >>> import arviz as az >>> from sherpa.sim import mcmc_to_arviz >>> dataset = mcmc_to_arviz(mcmc=mcmc, fit=f, list_of_draws=[draws]) >>> _ = az.plot_pair(dataset, kind=["scatter", "kde"], kde_kwargs={"fill_last": False}, ... marginals=True, point_estimate="median", figsize=(12, 12)) See the `ArviZ `_ documentation for more details on the available plotting functions and statistical diagnostics. Reference/API ============= .. toctree:: :maxdepth: 2 sim mh sample simulate