**************************************** Evaluating the model on a different grid **************************************** Sherpa now provides *experimental* support for evaluating a model on a different grid to the independent axis. This can be used to better model the underlying distribution (by use of a finer grid), or to include features that lie outside the data range but, due to the use of a convolution model, can affect the values within the data range. Existing Sherpa models take advantage of this support by inheriting from the :py:class:`~sherpa.models.model.RegriddableModel1D` or :py:class:`~sherpa.models.model.RegriddableModel2D` classes. The idea is to create a copy of the model which evaluates the model on the new grid, and then resamples it onto the output grid. This is handled by the `regrid` method from these two classes, which is given the grid to evaluate the model on, and it returns a copy of the original model. The examples assume the following: >>> import numpy as np One dimensional models ====================== Non-integrated models --------------------- For this example we shall evaluate the model on the grid x=4450.25, 4450.75, ... 4549.75. :: >>> xgrid = np.arange(4450.25, 4550, 0.5) The "regridded" model is created by passing the grid to the :py:meth:`~sherpa.models.model.RegriddableModel1D.regrid` method:: >>> from sherpa.models.basic import Gauss1D >>> mdl = Gauss1D('orig') >>> rmdl = mdl.regrid(xgrid) The "new" model is really just a wrapper around the original model, which means that it shares the parameter values and settings. This is shown below where the ``pos`` and ``fwhm`` parameters of the ``rmdl`` are labeled by the label given to ``mdl`` (namely "orig"):: >>> mdl.pos = 4500 >>> mdl.fwhm = 20 >>> print(mdl) orig Param Type Value Min Max Units ----- ---- ----- --- --- ----- orig.fwhm thawed 20 1.17549e-38 3.40282e+38 orig.pos thawed 4500 -3.40282e+38 3.40282e+38 orig.ampl thawed 1 -3.40282e+38 3.40282e+38 >>> print(rmdl) regrid1d(orig) Param Type Value Min Max Units ----- ---- ----- --- --- ----- orig.fwhm thawed 20 1.17549e-38 3.40282e+38 orig.pos thawed 4500 -3.40282e+38 3.40282e+38 orig.ampl thawed 1 -3.40282e+38 3.40282e+38 The regridded model can be evaluated as any other model, but behind the scenes the data is calculated on the original grid (in this case ``xgrid``) and then converted to match the evaluation grid. :: >>> x = np.arange(4460, 4540, 2) >>> y1 = mdl(x) >>> y2 = rmdl(x) >>> np.testing.assert_allclose(y1, y2) Integrated models ----------------- The approach is similar, except that the :py:meth:`~sherpa.models.model.RegriddableModel1D.regrid` method is given two arrays, for the low and high edges of each bin. :: >>> imdl = mdl.regrid(xgrid[:-1], xgrid[1:]) >>> y1 = mdl(x[:-1], x[1:]) >>> y2 = imdl(x[:-1], x[1:]) >>> np.testing.assert_allclose(y1, y2, rtol=1e-2) The fact that the models are integrated across the bins means that the results do not agree that closely in this case, which is why the relative tolerance is only 0.01 in the check above. The results would be closer if the two grids had a common origin (e.g. if ``xgrid`` were defined over the bins 0-0.5, 0.5-1 rather than 0.25-0.75, 0.75-1.25). Mixing the two -------------- It is an error to try to evaluate a regridded model with the wrong style of grid, and will raise a :py:class:`~sherpa.utils.err.ModelErr` error:: >>> rmdl(x[:-1], x[1:]) Traceback (most recent call last): ... sherpa.utils.err.ModelErr: A non-integrated grid is required for model evaluation >>> imdl(x) Traceback (most recent call last): ... sherpa.utils.err.ModelErr: A non-overlapping integrated grid is required for model evaluation, e.g. [0.1,0.2],[0.2,0.3] Two dimensional models ====================== The two-dimensional non-integrated case is created by passing the ``x0`` and ``x1`` arrays to the :py:meth:`~sherpa.models.model.RegriddableModel1D.regrid` method:: >>> from sherpa.models.basic import Gauss2D >>> g2 = Gauss2D('g2') >>> x1grid, x0grid = np.mgrid[100:200:0.5, 50:150:0.5] >>> rg2 = g2.regrid(x0grid.flatten(), x1grid.flatten()) As with the one-dmensional case, the regridded model uses the parameters of the original model:: >>> g2.xpos = 100 >>> g2.ypos = 150 >>> g2.fwhm = 25 >>> print(rg2) regrid2d(g2) Param Type Value Min Max Units ----- ---- ----- --- --- ----- g2.fwhm thawed 25 1.17549e-38 3.40282e+38 g2.xpos thawed 100 -3.40282e+38 3.40282e+38 g2.ypos thawed 150 -3.40282e+38 3.40282e+38 g2.ellip frozen 0 0 0.999 g2.theta frozen 0 -6.28319 6.28319 radians g2.ampl thawed 1 -3.40282e+38 3.40282e+38 .. note:: Evaluation of the 2D model is complicated by the current implementation. Please see `issue 840 `_ for more information.